Ana içeriğe atla

Robot Dinamik Hesaplamalarının Görselleştirilmesi

Robot Dinamik Hesaplamalarının Görselleştirilmesi




Merhaba,

Bu video da Kuka KR10 adlı robot kol modelinin ilk 3 ekseni için ileri kinematik ve motor seçimi için eksenlerde oluşan torklar, grafikler eşliğinde görselleştirilmiştir.


Yapılan çalışma da hazır kütüphane kullanılmamıştır. İleri kinematik ve Lagrange & Hamilton yöntemi Matlab ortamında birebir hesaplanmıştır.


(Kodlar ücret karşılığı paylaşılacaktır.)



Yorumlar

Bu blogdaki popüler yayınlar

Matlab Operatörler

Matematiksel operatörler: +  Toplama –  Çıkarma *  Çarpma /  Bölme ^  Üst alma .* Elemanter çarpım ./  Elemanter bölme .^  Elemanter üst alma a+b  Boyutları aynı olan a ve b matrisini toplar. a-b  Boyutları aynı olan a ve b matrislerinin farkını alır. a*b  Sütun sayısı m olan a matrisiyle satır sayısı m olan b matrisini çarpar. a/b  b düzenli kare bir matrisse (determinantı sıfırdan farklıysa), aynı boyutlu a matrisiyle; a*inv(b)işlemini yapar. a.*b  Boyutları aynı olan a ve b matrislerinin elemanlarını karşılıklı olarak çarpar. a./b  Boyutları aynı olan a ve b matrislerinin elemanlarını karşılıklı oranlar. sqrt  Kök alma abs  Mutlak değer rats  Kesirli gösterim Mantıksal operatörler: &  Ve |  Veya ~  Değil /  Bölme Karar operatörleri: >  Büyüktür <  Küçüktür >=  Büyük eşittir <=  Küçük eşittir ==  Eşittir ~= ...

2. Dereceden 1 Bilinmeyenli Denklemin Köklerini Buldurma - MATLAB

2. dereceden bir bilinmeyenli denklemin köklerini buldurmak için denklemin bilinmeyen katsayılarına ve sabit sayısına ihtiyacımız var. Kök buldurma denklemi aşagıdaki gibidir. Yapacagımız işlemleri daha iyi anlamanız için akış diyagramı aşagıda ki fotoğrafta görülmektedir Akış diyagramından yola çıkarak matlab kodlarıını adım adım yazalım. a=input(‘a= ’); %x^2nin katsayısını kullanıcıdan girmesini istiyoruz b=input(‘a= ’); %x in katsayısını kullanıcıdan girmesini istiyoruz c=input(‘a= ’); %c nin yani sabit sayının kullanıcıdan girmesini istiyoruz disp (‘ ’); %ekrana birazcık boşluk bırakıyoruz d=b * b - 4 * a * c; if (d > 0 ) disp (‘Gerçek İki Kök Vardır’); %ekrana kök bulunduğunu yazıyoruz x1=( - b - sqrt (d)) / ( 2 * a); %birinci kökü buluyoruz x2=( - b + sqrt (d)) / ( 2 * a); %ikinci kökü buluyoruz [yz,ht]=sprintf(‘ 1. Kök: %0.5f’,x1); disp(yz); %birinci kökü ekrana formatlı olarak yazdırıyoruz [yz,ht]=spri...